- (c) The takeoff data must be based on—
- (1) A smooth, dry, hard-surfaced runway, in the case of land planes and amphibians;
- (2) Smooth water, in the case of seaplanes and amphibians; and
- (3) Smooth, dry snow, in the case of skiplanes.
- (d) The takeoff data must include, within the established operational limits of the airplane, the following operational correction factors:
- (1) Not more than 50 percent of nominal wind components along the takeoff path opposite to the direction of takeoff, and not less than 150 percent of nominal wind components along the takeoff path in the direction of takeoff.
 - (2) Effective runway gradients.

§25.107 Takeoff speeds.

- (a) V_1 must be established in relation to $V_{\it EF}$ as follows:
- (1) $V_{\it EF}$ is the calibrated airspeed at which the critical engine is assumed to fail. $V_{\it EF}$ must be selected by the applicant, but may not be less than VMC G determined under §25.149(e).
- (2) V_1 , in terms of calibrated airspeed, is the takeoff decision speed selected by the applicant; however, V_1 may not be less than V_{EF} plus the speed gained with the critical engine inoperative during the time interval between the instant at which the critical engine is failed, and the instant at which the pilot recognizes and reacts to the engine failure, as indicated by the pilot's application of the first retarding means during accelerate-stop tests.
- (b) V_{2MIN} , in terms of calibrated airspeed, may not be less than—
 - (1) 1.2 V_S for—
- (i) Two-engine and three-engine turbopropeller and reciprocating engine powered airplanes; and
- (ii) Turbojet powered airplanes without provisions for obtaining a significant reduction in the one-engine-inoperative power-on stalling speed;
 - (2) $1.15 V_S$ for—
- (i) Turbopropeller and reciprocating engine powered airplanes with more than three engines; and
- (ii) Turbojet powered airplanes with provisions for obtaining a significant

- reduction in the one-engine-inoperative power-on stalling speed; and
- (3) 1.10 times V_{MC} established under §25.149.
- (c) V_2 , in terms of calibrated airspeed, must be selected by the applicant to provide at least the gradient of climb required by §25.121(b) but may not be less than—
 - (1) V_{2MIN} , and
- (2) V_R plus the speed increment attained (in accordance with §25.111(c)(2)) before reaching a height of 35 feet above the takeoff surface.
- (d) V_{MU} is the calibrated airspeed at and above which the airplane can safely lift off the ground, and continue the takeoff. V_{MU} speeds must be selected by the applicant throughout the range of thrust-to-weight ratios to be certificated. These speeds may be established from free air data if these data are verified by ground takeoff tests.
- (e) VR, in terms of calibrated airspeed, must be selected in accordance with the conditions of paragraphs (e)(1) through (4) of this section:
 - (1) V_R may not be less than—
 - (i) V_1 ;
 - (ii) 105 percent of V_{MC} ;
- (iii) The speed (determined in accordance with $\S25.111(c)(2)$) that allows reaching V_2 before reaching a height of 35 feet above the takeoff surface; or
- (iv) A speed that, if the airplane is rotated at its maximum practicable rate, will result in a V_{LOF} of not less than 110 percent of V_{MU} in the all-engines-operating condition and not less than 105 percent of V_{MU} determined at the thrust-to-weight ratio corresponding to the one-engine-inoperative condition.
- (2) For any given set of conditions (such as weight, configuration, and temperature), a single value of V_R , obtained in accordance with this paragraph, must be used to show compliance with both the one-engine-inoperative and the all-engines-operating takeoff provisions.
- (3) It must be shown that the one-engine-inoperative takeoff distance, using a rotation speed of 5 knots less than V_R established in accordance with paragraphs (e)(1) and (2) of this section, does not exceed the corresponding one-engine-inoperative takeoff distance

§ 25.109

using the established V_R . The takeoff distances must be determined in accordance with §25.113(a)(1).

- (4) Reasonably expected variations in service from the established takeoff procedures for the operation of the airplane (such as over-rotation of the airplane and out-of-trim conditions) may not result in unsafe flight characteristics or in marked increases in the scheduled takeoff distances established in accordance with §25.113(a).
- (f) V_{LOF} is the calibrated airspeed at which the airplane first becomes airborne

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55466, Dec. 20, 1976; Amdt. 25–42, 43 FR 2320, Jan. 16, 1978]

§25.109 Accelerate-stop distance.

- (a) The accelerate-stop distance is the greater of the following distances:
- (1) The sum of the distances necessary to—
- (i) Accelerate the airplane from a standing start to $V_{\it EF}$ with all engines
- (ii) Accelerate the airplane from V_{EF} to V_1 and continue the acceleration for 2.0 seconds after V_1 is reached, assuming the critical engine fails at V_{EF} ; and
- (iii) Come to a full stop from the point reached at the end of the acceleration period prescribed in paragraph (a)(1)(ii) of this section, assuming that the pilot does not apply any means of retarding the airplane until that point is reached and that the critical engine is still inoperative.
- (2) The sum of the distances necessary to—
- (i) Accelerate the airplane from a standing start to V_1 and continue the acceleration for 2.0 seconds after V_1 is reached with all engines operating; and
- (ii) Come to a full stop from the point reached at the end of the acceleration period prescribed in paragraph (a)(2)(i) of this section, assuming that the pilot does not apply any means of retarding the airplane until that point is reached and that all engines are still operating.
- (b) Means other than wheel brakes may be used to determine the accelerate-stop distance if that means—
 - (1) Is safe and reliable;
- (2) Is used so that consistent results can be expected under normal operating conditions; and

- (3) Is such that exceptional skill is not required to control the airplane.
- (c) The landing gear must remain extended throughout the accelerate-stop distance.
- (d) If the accelerate-stop distance includes a stopway with surface characteristics substantially different from those of a smooth hard-surfaced runway, the takeoff data must include operational correction factors for the accelerate-stop distance. The correction factors must account for the particular surface characteristics of the stopway and the variations in these characteristics with seasonal weather conditions (such as temperature, rain, snow, and ice) within the established operational limits.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–42, 43 FR 2321, Jan. 16, 1978]

§25.111 Takeoff path.

- (a) The takeoff path extends from a standing start to a point in the takeoff at which the airplane is 1,500 feet above the takeoff surface, or at which the transition from the takeoff to the en route configuration is completed and a speed is reached at which compliance with §25.121(f) is shown, whichever point is higher. In addition—
- (1) The takeoff path must be based on the procedures prescribed in §25.101(f);
- (2) The airplane must be accelerated on the ground to V_{EF} , at which point the critical engine must be made inoperative and remain inoperative for the rest of the takeoff; and
- (3) After reaching V_{EF} , the airplane must be accelerated to V_2 .
- (b) During the acceleration to speed V_2 , the nose gear may be raised off the ground at a speed not less than V_R . However, landing gear retraction may not be begun until the airplane is airborne.
- (c) During the takeoff path determination in accordance with paragraphs (a) and (b) of this section—
- (1) The slope of the airborne part of the takeoff path must be positive at each point;
- (2) The airplane must reach V_2 before it is 35 feet above the takeoff surface and must continue at a speed as close as practical to, but not less than V_2 ,